Balanced RAP/RAS Mix Design and Performance Evaluation for Project-Specific Service Conditions

Texas A&M Transportation Institute

Fujie Zhou TxAPA, Buda, Texas; Jan. 8, 2013

Outline

- Introduction
- Accomplishments under Projects 0-6092/0-6614
 - Best practices
 - Field performance data of RAP/RAS test sections
- Balanced RAP/RAS mix design for project-specific conditions
- Approaches for improving RAP/RAS mix performance
- Summary and conclusions

Introduction

- □ RAP/RAS
 - - Fresh/"young"/old pavements
 - - Manufacture waste/Tear-off
- □ Why use RAP/RAS
 - Save money
 - Asphalt binder, aggregates, etc.
 - Good for environment

□ In most cases we cannot avoid RAP/RAS mixes!

Introduction

- Variability
- Durability of RAP/RAS mixes
 - Stiffest virgin binder in Texas: PG76-22
 - RAP: PG82 to PG110; RAS: PG130 to PG200
- Workability and field compaction

Solutions

- Best practices for processing, produc., construc. QC/QA
- Balanced mix design for project-specific conditions

Major Accomplishments under Projects 0-6092/0-6614

Best practices for RAP/RAS

- Field test sections and Performance data
- Balanced mix design
 - Hamburg for rutting
 - Overlay test (OT) for cracking
 - OT requirement???

Field Test Sections and Performance

Amarillo-Overlay: (Aug 2009)

- IH40: Heavy traffic; Cold weather; Soft binder
- RAP: 0, 20, 35%

Pharr district-New Const.: (April 2010)

- FM1017: low traffic; Hot weather; stiff binder
- **RAP: 0, 20, 35%**

- Laredo-Overlay: SH359, 20%RAP (Mar. 2010)
- Houston-New Const.:SH146, 15%RAP/5%RAS (Oct. 2010)
- Austin-Overlay: FM973 (Jan. 2012)
- Fort Worth-AC/CRCP: Loop 820 (July 2012)

Field Test Sections and Performance

Performance of test sections

Test sections		Highway	Overlay/ new const.	Weather	Traffic MESAL	OT cycles	Performance
Amarillo	0%RAP	IH40 (severely cracked thick asphalt pavement)	4 inch/ overlay	Very cold	30	95	3 yrs: 100% refl. cracking
	20%RAP					103	
	35%RAP					200	3 yrs: 57% refl. cracking
Pharr	0%RAP	FM1017-Very good support	1.5 inch/ new const.	Very hot	0.8	28	2.5 yrs: All in
	20%RAP					6	good condition
	35%RAP					7	
Laredo	20%RAP	SH359-regular support	3 inch/ overlay	Very hot	1.5	3	2.5 yrs: No cracking
Houston	15%RAP/ 5%RAS	SH146-Very good support	2 inch/new const.	hot	3.0	3	2 yrs: No cracking

Field Test Sections and Performance

- Lessons learned from field test sections

- 1. RAP/RAS mixes can perform well at certain locations.
- 2. One OT requirement cannot fit for all.
- 3. Successful use of RAP/RAS mixes depends on
 - Weather/Traffic
 - AC overlay
 - Overlay thickness, Existing pavement structure (AC/AC; AC/PCC)
 - Existing pavement conditions
 - New construction
 - Pavement structure and which layer (surface, base, etc.)
- 4. Design the mix for project-specific service conditions

Balanced RAP/RAS Mix Design for Project-Specific Service Conditions

- Hamburg test for rutting/moisture damage
- Overlay test for cracking
 - OT requirement determined by Overlay program
- □ Max. density-98% for controlling potential bleeding

Balanced RAP/RAS Mix Design for Project-Specific Service Conditions

OT cycles	A	n	Overlay Cracking
1	4.3800E-03	2.0470	
2	1.1655E-03	2.4102	
3	5.3725E-04	2.6227	
4	3.1013E-04	2.7734	
5	2.0251E-04	2.8903	
6	1.4296E-04	2.9859	Depending on
7	1.0650E-04	3.0667	traffic,
8	8.2522E-05	3.1366	weather, existing
9	6.5898E-05	3.1983	pavement
10	5.3886E-05	3.2536	structure and
30	6.6096E-06	3.8292	(LTE)
50	2.4914E-06	4.0969	
100	6.6294E-07	4.4601	
200	1.7640E-07	4.8233	
300	8.1315E-08	5.0358	
750	1.4129E-08	5.5159	
1000	8.1559E-09	5.6667	

AC overlay scenarios □ AC/PCC AC/CRCP □ AC/AC/CTB AC/AC/granular base Traffic level: 3 MESAL SH/US: 3-5 MESAL

Weather: Austin

- 2" AC overlay scenarios: 3 MESAL/Austin
 - - 10" PCC/6" base, LTE=70%
 - AC/CRCP
 - 10" CRCP/6" base, LTE=90%
 - AC/AC/CTB
 - 3" AC/10" CTB, LTE=70%

AC/AC/granular base

- 5" AC/12" Base, cracking severity=medium
- FM973: 8" AC/10" stiff base, low severity cracking

2" Overlay under 3 MESALs/20 Years

Use of RAP/RAS Mixes with Low Risk

- Overlay

 - □ JPCP with good LTE≥90
 - Thick AC with low severity cracking (FM973)
- New construction
 - Bond breaker layer between PCC and subbase
 - Thick pavement, like NCAT test track
 - Sandwich pavement: virgin AC/RAP-RAS AC/virgin AC

2" AC overlay scenarios: 3 MESAL/Amarillo
 AC/AC/CTB

■ 3" AC/10" CTB, LTE=70%

AC/AC/granular base
 5" AC/12" Base, medium severity cracking

2" AC overlay scenarios: 3 MESAL/McAllen
 AC/AC/CTB

- 3" AC/10" CTB, LTE=70%
- AC/AC/granular base
 5" AC/12" Base, medium severity cracking

□ McAllen

Balanced RAP/RAS Mix Design for Project-Specific Service Conditions

Design your mix for project-specific condition!

350

Outline

- Introduction
- Accomplishments under Projects 0-6092/0-6614
 - Best practices
 - Field performance data of RAP/RAS test sections
 - ••••
- Balanced RAP/RAS mix design for project-specific conditions
- Approaches for improving RAP/RAS mix performance
- Summary and conclusions

Approaches for Improving RAP/RAS Mix Performance

- Available approaches
 - Reduce RAP/RAS usage
 - Increase virgin AC (higher density)
 - **Soft, modified binders:** PG64-28, PG64-34, PG58-34
 - Rejuvenators

Impact of Soft Binder on Rutting

Effect of soft binder FM973 Mix with 5%RAS

RAS

Impact of Soft Binder on Cracking

Effect of soft binders Paris Sandstone Mix with 15%RAP

RAP

Summary and Conclusions

- Best practices for best use of RAP/RAS are available.
- RAP/RAS mixes can have similar or even better performance with proper design.
- Balanced RAP/RAS mix design for project-specific service conditions is highly recommended for use.
- Different approaches are available for improving RAP/RAS mix performance.

Thank You All!

Questions???

Field test sections to validate approaches for improving perfor.

- 🗆 US87
 - □ Increase design density: 96.5% vs. 97.5%
- □ FM973
 - **D** PG64-22 vs. PG58-28
 - HMA vs. WMA
- Loop820
 - □ Increase design density: 97% vs. 97.5%
 - Soft binder: PG64-22 vs. PG64-28

Field test sections to validate approaches for improving perf.

US 87 Reflective Cracking Rate (%)

	Months since construction	S1- Higher AC	S2- Regular AC
4/5/2011	6	0.0	0.0
12/15/2011	14	2.9	17.5
5/30/2012	19	17.1	42.5

US87 Overlay Material and Thickness

3", built in October, 2010

3" Existing AC

8" Granular Base

Field Test Sections

□ FM973: Overlay, Austin Airport

7 Overlay Test Sections

Section	Туре	Binder	RAP	RAS
1	HMA	70-22	0	0
2	HMA	64-22	30	0
3	НМА	64-22	15	3
4	НМА	64-22	0	5
5	НМА	58-28	30	0
6	НМА	58-28	15	3
9	WMA	64-22	15	3

□ So far all sections are good.

Field test sections

□ Loop 820: 4 test sections/2" AC/CRCP

Section	Туре	Binder	AC (%)	RAP (%)	Manufacture waste RAS (%)
1	WMA-Advera	64-22	5.1	13	5
	WMA-Advera in the				
2	RAS	64-22	5.1	13	5
3	WMA-Advera	64-28	5.1	13	5
4	WMA-Advera	64-22	5.5	13	5

